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6. JORDAN CANONICAL 

FORM 
§6.1. Minimum Polynomials 
If you substitute the square matrix A into the 

characteristic polynomial A() you get the zero matrix. 

But there may be polynomials of lower degree for which 

this is true. 

 

A minimum polynomial for the square matrix A is a 

monic polynomial f () of lowest degree with f(A) = 0. 

Since A(x) = 0, 1  deg f()  n for any minimum 

polynomial f() for the n  n matrix A. 

 

Example 1: The scalar matrix 
















200

020

002

 has  − 2 as a 

minimum polynomial. 

 

Example 2: If A = 
















100

020

001

 then (A − I)(A − 2I) = 0, so 

( − 1)( − 2) = 2 − 3 + 2 is a minimum polynomial for 

A. 
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 Is a minimum polynomial unique? Could we have, 

for example, a matrix for which both x3 + 4x − 2 and x3 − 

5x2 + 7 are minimum polynomials? The answer is “no”, 

for that would mean that: 

                          A3 + 4A − 2I = 0 and 

                           A3 − 5A2 + 7I = 0. 

 

Subtracting, we would have 5A2 + 4A − 9I = 0, which 

would contradict the minimality of the degree of the 

minimum polynomials. 

 

 But what if there is no polynomial f(x) for which 

f(A) = 0? That can’t be, as the following theorem shows. 

 

Theorem 1: For any n  n matrix A over a field F there 

exists a non-zero polynomial f(x), with coefficients in F, 

for which f(A) = 0. 

Proof: Consider the matrices I, A, A2, …, An2

. The space 

of all n  n matrices over F has dimension n2 and here we 

have n2 + 1 of them. They must therefore be linearly 

independent over F and so f(A) = 0 for some polynomial 

of degree at most n2 + 1. 

 

 In fact we can do much better than that. We will 

later see that the minimum polynomial of an n  n matrix 

has degree at most n. 
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Theorem 2: A minimum polynomial for a given matrix 

is unique. 

Proof: Suppose xr + ar−1xr−1 + ... + a1x + a0 and 

xr + br−1xr−1 + ... + b1x + b0 be distinct minimum 

polynomials for A. Then 

              Ar + ar−1A
r−1 + ... + a1A + a0I = 0 and 

              Ar + br−1Ar−1 + ... + b1A + b0I = 0. 

Subtracting we get: 

(ar−1 − br−1)Ar−1 + ... + (a1 − b1)A + (a0 − b0)I = 0. 

Let f(x) = (ar−1 − br−1)xr−1 + ... + (a1 − b1)x + (a0 − b0). 

Since the original two polynomials were distinct this is 

not the zero poloynomial. It may not have degree r − 1 

since ar−1 and br−1 might be equal, but it certainly is a 

non-zero polynomial and its degree is less than r. Making 

it monic we get a contradiction. ☺ 

 

 Since it is unique we can now refer to it as the 

minimum polynomial and it is now appropriate to give it 

a notation. We define mA(x) to be the minimum 

polynomial of A. Sometimes we will omit the subscript 

and just write m(x). 
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Theorem 3: For all square matrices A, if f(A) = 0 then 

mA(x) divides f(x). 

Proof: By the division algorithm for polynomials we may 

divide f(x) by the minimum polynomial to get a quotient 

and a remainder. 

So f(x) = mA(x)q(x) + r(x) where either r(x) = 0 or 

                                                          deg r(x) < deg mA(x). 

But r(A) = f(A) − mA(A)q(A) = 0 − 0 = 0. If r(x)  0 this 

would contradict the minimality of the degree of the 

minimum polynomial.  Hence r(x) = 0 and so mA(x) | f(x). 
☺ 

Corollary: mA(x) divides A(x). 

 

 So we can find the minimum polynomial of a 

matrix by factorising its characteristic polynomial and 

testing all its divisors. 

 

Example 3: Find the minimum polynomial of 

A = 
















−−−

842

21127

21149

. 

Solution: tr(A) = 5, 

tr2(A) = (−108 + 98) + (72 − 42) + (−96 + 84) 

          = − 10 + 30 − 12 = 8 

|A| = 9(−96 + 84) − 14(−56 + 42) + 21(−28 + 24) 

     = 4. 
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 (x) = x3 − 5x2 + 8x − 4 

             = (x − 1)(x − 2)2. 

Hence m(x) divides (x − 1)(x − 2)2. Clearly it is not a linear 

factor since A is not a scalar matrix. This leaves three 

possibilities: (x − 2)2, (x − 1)(x − 2) and (x) itself. 

(A − 2I)2 = 






7    14   21

−7  −14  −21

2    4    6
 






7    14   21

−7  −14  −21

2    4    6
  

                = 






      

      

     −6

   0. 

  

(A − I)(A − 2I)  = 






8    14   21

−7  −13  −21

2    4    7
 






7    14   21

−7  −14  −21

2    4    6
  

                          = 






0  0  0

0  0  0

0  0  0
  

So mA(x) = (x − 1)(x − 2) = x2 − 3x + 2. 

 

 Once we have proved the next theorem we can 

reduce the number of factors of (x) that we need to 

check. 

  



 

172 

 

Theorem 4: Every eigenvalue is a zero of the minimum 

polynomial. 

Proof: Let m(x) = xr + an−1xr−1 + ... + a1x + a0 be the 

minimum polynomial for A. 

Let  be an eigenvalue of A and let v be a corresponding 

eigenvector. 

Then m(A)v = (Ar + ar−1Ar−1 + ... + a1A + a0I)v 

                     = (r + ar−1r−1 + ... + a1 + a0)v 

But m(A)v = 0v = 0. 

 (r + ar−1r−1 + ... + a1 + a0)v = 0. 

Since v  0, m() = r + ar−1r−1 + ... + a1 + a0 = 0. ☺ 

Corollary: mA(x) and A(x) have exactly the same zeros, 

but with perhaps different multiplicities. 

 

Example 4: Suppose, for some matrix A, 

(x) = (x − 1)3(x − 2)2(x − 2). 

Then we would evaluate the following in turn and we 

would stop if we got one equal to zero. 

(A − I)(A − 2I)(A − 3I) 

(A − I)2(A − 2I)(A − 3I) 

(A − I)(A − 2I)2(A − 3I) 

(A − I)2(A − 2I)2(A − 3I) 

If none of these are zero then we could conclude that the 

minimum polynomial is the characteristic polynomial. 
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 As we know, similar matrices have the same trace, 

determinant and characteristic polynomial. They also 

have the same minimum polynomial. 

 

Theorem 5: Similar matrices have the same minimum 

polynomial. 

Proof:  Suppose that B = S−1AS. 

Now, for any k, Bk = (S−1AS) (S−1AS) … (S−1AS) 

                               = S−1AkS. 

So for any polynomial f(x), f(B) = S−1f(A)S and hence 

f(B) = 0 if and only if f(A) = 0. 

It follows from Theorem 2 that the minimum polynomials 

of A and B divide each other, and being monic, they must 

be equal. ☺ 

 

Theorem 6: A matrix is diagonalisable if and only if its 

minimum polynomial has no repeated zeros. 

Proof: Let A = SDS−1 where D = 





















n













00

00

00

2

1

 and S 

is invertible. 

Let u1
, ..., ur

 be the distinct eigenvalues. 

Then mA(x) = mD(x) = (x − u1
) (x − u2

) ... (x − ur
). 

Conversely suppose that A is an n  n matrix and suppose 

that 



 

174 

 

m(x) = (x − 1)(x − 2) ... (x − r) where the i are distinct. 

For each  i  define mi(x) = 
m(x)

x − i
 , that is m(x) with the 

factor x − i removed. 

Then the mi(x) are coprime and so 1 = m1(x)k1(x) + ... + 

mrkr(x) for some polynomials 

                                                                                                                            

k1(x), ..., kr(x). 

Let v be any column vector and let vi = mi(A)ki(A)v for i 

= 1, 2, ..., r. 

Then v = v1 + ... + vr. 

Now (A − iI)vi = (A − i)mi(A)ki(A)v 

                          = m(A)ki(A)v 

                          = 0 ki(A)v 

                          = 0. 

Hence each vi is an eigenvalue, with i being the 

corresponding eigenvector. 

We have therefore shown that every vector is a sum of 

eigenvectors. The eigenvectors therefore span Rn, and a 

subset of them will be a basis of eigenvectors. We have 

shown that this means that A is diagonalisable. ☺ 

 

 We have shown that matrices with distinct 

eigenvalues and matrices of finite order are 

diagonalisable. Having proved theorem 3 we can provide 

much shorter proofs. 
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Theorem 7: Matrices with no repeated eigenvalues and 

matrices A such Ar = I for some r, are diagonalisable. 

Proof: If A(x) has no repeated zeros then the same is true 

of mA(x). 

If Ar = I then mA(x) divides xr − 1, which has no repeated 

zeros. ☺ 

 

§6.2. Jordan Blocks 
 We’ve said a lot about diagonalisable matrices, but 

what about those that have the misfortune to be non-

diagonalisable? Can we find something close to a 

diagonal matrix that they are similar to? 

A Jordan block is a square matrix of the form 































0000

1000

010

001







. 

There are zeros below the diagonal and the same value 

down the main diagonal. Every component in the 

diagonal above the main diagonal has the value 1. Above 

and to the right of this all the components are zero. 

 

Example 5: A 1  1 Jordan block is just any 1  1 matrix. 

A 2  2 Jordan block has the form 












0

1
. 



 

176 

 

A 3  3 Jordan block has the form 






















00

10

01

. 

A 4  4 Jordan block has the form 





























000

100

010

001

. 

Jordan blocks of size 2  2 and bigger are not 

diagonalisable. They are the building blocks of non-

diagonalisable matrices. 

 

We define the direct sum of square matrices A1, A2, ..., Ar 

to be the matrix 





















=

r

r

A

A

A

AAA

000

00

00

2

1

21






  

 

They are like diagonal matrices except that the Ai’s are 

square matrices and the 0’s above are matrices. Diagonal 

matrices are simply direct sums of 1  1 matrices. 
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Example 6: ( )9
87

65

43

21


















 = 























90000

08700

06500

00043

00021

. 

 

Clearly the characteristic polynomial of a direct sum is 

the product of the corresponding characteristic 

polynomials. 

 

Example 7: The characteristic polynomial of the above 5 

 5 matrix is 

(2 − 5 − 2)(2 − 13 −2)( − 9). 

 

Theorem 8: If A is an n  n matrix and mA(x) = (x − )n 

then A is similar to a Jordan block. 

Proof: Suppose mA(x) = (x − )n. Clearly  is the only 

eigenvalue. 

Since (A − I)n−1  0, the kernel of the linear 

transformation v → (A − I)n−1v is not Rn. 

Let u be any vector such that (A −I)n−1u  0. 

[If (A − I)n−1u = 0 for all u then (A − I)n−1 = 0, 

contradicting the minimality of the degree of A(x).] 

For k = 1, 2, 3, ..., n define vi = (A − I)n−ku. 

So (A − I)v1 = (A − I)nu = 0, so Av1 = v1. 
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If k  2 then (A − I)vk = (A − I)n−(k−1)u = vk−1 so Avk = 

vk + vk−1. 

 

We now show that {v1, v2, ..., vn} is linearly independent. 

Suppose that x1v1 + ... + xnvn = 0. 

Then (x1(A − I)n−1 + x2(A − I)n−2 + ... + xn−1(A − I) + 

xnI)u = 0 

Suppose that xi  0 for some m and let m be the largest 

such subscript. 

Then (x1(A − I)n−1 + x2(A − I)n−2 + ... + xm−1(A − 

I)n−m+1 + xm(A − I)n−m)u = 0 

Multiply by (A − I)m−1. Then xm(A − I)n−1u = 0. 

[All the previous terms disappear since (A − I)n = 

0.] 

Since we chose u so that (A − I)n−1u  0, it follows 

that xm = 0, a contradiction. 

So xi = 0 for all i and hence {v1, v2, ..., vn} is linearly 

independent. This set must therefore be a basis for Rn. 

 

We have Av1 = v1, 

               Av2 = v2 + v1, 

               Av3 = v3 + v2, 

               ....................... 

               Avn = vn + vn−1. 

So the matrix of the linear transformation v → Av relative 

to the basis {v1, v2, ..., vn} is the Jordan block 
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







  1  0  ...  0

0    1  ...  0

… … ... ... …

0  0  0  ...  

 . This means that the matrix A is similar 

to this Jordan block. ☺ 

 

§6.3. The Jordan Canonical Form 
 A Jordan Canonical Form is a direct sum of Jordan 

blocks. We’re going to prove that every square matrix 

over C is similar to a direct sum of Jordan blocks. 

Diagonalisable matrices are precisely those where the 

Jordan blocks are all 1  1 matrices. 

 

Example 8: 























50000

15000

00200

00120

00012

 is a direct sum of two Jordan 

blocks. 

 

Theorem 9: Let M be an n  n matrix over a field F whose 

minimum polynomial is a(x)b(x), where a(x) and b(x) are 

coprime. Then M is similar to A  B for some matrices 

A, B where mA(x) = a(x) and mB(x) = b(x). 

Proof: Since a(x), b(x) are coprime, 1 = a(x)h(x) + 

b(x)k(x) for some a(x), b(x). 
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Let U be the kernel of the linear transformation v → 

a(M)v and let V be the kernel of the linear transformation 

v → b(M)v. 

For any vector v  Fn, v = [a(M)h(M) + b(M)k(M)]v so 

U  V = 0 and U + V = Fn. 

Moreover, if v  U then Mv  U and if v  V then Mv  

V. 

Let {u1, u2, ..., ur} be a basis for U and let {v1, v2, ..., vs} 

be a basis for V. 

Then {u1, u2, ..., ur, v1, v2, ..., vs} is a basis for Fn. 

Relative to this basis the matrix for v → Mv has the form 










B

A

0

0
 where A is an r  r matrix with mA(x) = a(x) and 

B is an s  s matrix with mB(x) = b(x). [Of course n = r + 

s.] ☺ 

 

 We are now ready to prove the Jordan Canonical 

form theorem. 

 

Theorem 10: Every square matrix over C is similar to a 

direct sum of Jordan blocks. 

Proof: We prove this by induction on the size of the 

matrix. The theorem is clearly true for 

1  1 matrices. Suppose that A is an n  n matrix and that 

the theorem holds for smaller matrices. 
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Let the minimum polynomial of A be m(x) = b(x)c(x) 

where b(x) = (x − 1)
r and c()  0. 

In other words there are precisely r factors of x − 1 in 

m(x).] 

By theorem 8, A is similar to a direct sum 






B 0

0 C
 where B 

is an r  r matrix with 

mB(x) = (x − 1)
r and C is an s  s matrix with mc(x) = 

c(x). 

By theorem 7, A is similar to a Jordan block and by 

induction C is similar to a direct sum of Jordan blocks. It 

is easy to see that if A1, A2 are similar to B1, B2 

respectively then A1  A2 is similar to B1  B2. ☺ 

Example 9: If A = 
















−

−

−

482

9143

18223

 find an invertible matrix 

S such that A = SJS−1 where J is a direct sum of Jordan 

blocks. 

Solution: We obtain the Jordan Canonical Form by 

following the steps in theorems 7 and 8. 

We begin by working out the characteristic polynomial. 

tr(A) = 3 − 14 + 4 = −7. 

tr2(A) = 
143

223

−

−
 + 

42

183
 + 

48

914

−

−
 = − 42 + 66 + 12 − 

36 − 56 + 72 = 16. 
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|A| = 

482

9143

18223

−

−

−

 = 

482

980

18223

−

−

−

 = 3(32 − 72) + 2(198 − 

144) = − 120 + 108 = − 12. 

Hence A(x) = x3 + 7x2 + 16x + 12 = (x + 2)2(x + 3). 

A + 2I = 
















−

−

−

682

9123

18225

 → 
















−

−

−

18225

682

341

 → 
















−

−

320

000

341

 → 

















−

−

000

320

341

. 

 
















2

3

6

 is an eigenvector for  = −2. 

A + 3I = 
















−

−

−

782

9113

18226

 → 
















−

−

−

18226

782

231

 → 
















−

−

−

640

320

231

 → 

















−

−

000

320

231

. 
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 
















2

3

5

 is an eigenvector for  = −3. 

(A + 2I)(A + 3I) = 
















−

−

−

682

9123

18225

















−

−

−

782

9113

18226

 = 















 −

***

***

*120

  0. 

 mA(x) = (x + 2)2(x + 3). 

At this stage we could decide that the Jordan Canonical 

Form must be  J = 
















−

−

−

300

020

012

 but let us derive it using 

the proofs of theorems 7 and 8. This would allow us to 

find an  appropriate invertible matrix S (which by the 

way, is not unique). 

  Let a(x) = (x + 2)2 and b(x) = x + 3. 

(A + 2I)2 = 
















−

−

−

682

9123

18225

















−

−

−

682

9123

18225

 = 
















−

−

−

042

063

0105

 → 















 −

000

000

021

. 
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So u1 = 
















1

0

0

, u2 = 
















0

1

2

 is a basis for U, the kernel of v → 

(A + 2I)2v. 

Also v1 = 
















2

3

5

 is a basis for V, the kernel of v → (A + 3I)v. 

Then u1 = 
















1

0

0

, u2 = 
















0

1

2

, v1 = 
















2

3

5

 is a basis for R3. 

Au1 = 
















4

9

18

 = 4u1 + 9u2, Au2 = 
















−

−

−

4

8

16

 = − 4u1 − 8u2 and 

Av1 = − 3v1. 

Relative to this basis the matrix of the linear 

transformation v → Av is 

















−

−

−

300

089

044

 = B  C where B = 








−

−

89

44
 and C = ( )3− . 

The minimum polynomial of B is (x + 2)2. Now B + 2I = 










−

−

69

46
 → 







 −

00

23
. 
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Let u = 








0

1
 which is a convenient vector outside of the 

null-space of B + 2I. 

Following theorem 7 we take v1 = (B + 2I)u = 








−

−

69

46










0

1
 = 









9

6
 and v2 = u = 









0

1
. 

Then Bv1 = 








−

−

89

44









9

6
 = 









−

−

18

12
 = −2v1 and Bv2 = 










−

−

89

44









0

1
 = 









9

4
 = v1 − 2v2. 

The matrix of B relative to this basis is 








−

−

20

12
, giving 

the Jordan form of A as 

J = 
















−

−

−

300

020

012

. We would have to do a bit more work 

to follow through the change of bases to find the 

appropriate S. 

 

A quicker way to find an appropriate invertible matrix S, 

once we have determined the  J, is to work from first 

principles. Write S in terms of its columns, as S = (v1, v2, 

v3). 
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Then AS = (Av1, Av2, Av3) and JS = 
















−

−

−

300

020

012

(v1, 

v2, v3) 

                                                        = (−2v2, v1 − 2v2, 

−3v3) 

So we want Av1 = −2v1, Av2 = v1 − 2v2 and v3 = −3v3. 

Take v1 = 
















2

3

6

, v3 = 
















2

3

5

. For v2 we must solve the system 

(A + 2I)v2 = v1. 

















−

−

−

2

3

6

6

9

18

8

12

22

2

3

5

 → 
















−

−

−

2

1

6

6

3

18

8

4

22

2

1

5

 → 
















−

−

0

1

1

0

3

3

0

2

4

0

0

1

 → 

















−

−

0

1

1

0

3

3

0

2

4

0

0

1

. Take v2 = 
















1

1

2

. 

Hence if S = 
















212

313

526

 we have A = SJS−1. 
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§6.4. Powers of Jordan Blocks 

The Binomial Coefficients 






m

r
  are normally only defined 

if 0  r  m. However we’ll allow r to go outside this range 

by defining 






m

r
  = 0 when r < 0 or r > m. 

 

Theorem:11: If J is an n  n Jordan Block, 









  1  0  ...  0

0    1  ...  0

… … ... ... …

0  0  0  ...  

  then Jm = 

 
m 





m

1
 m−1 





m

2
 m−2 

….. 







m

n−2
 m−n+2 







m

n−1
 m−n+1 

 0 m 




m

1
 m−1 

….. 







m

n−3
 m−n+3 







m

n−2
 m−n+2 

0 0 m ….. 







m

n−4
 m−n+4 







m

n−3
 m−n+3 

….. ….. ….. ….. ….. ….. 

0 0 0 ….. m 




m

1
 m−1 

0 0 0 ….. 0 m 

 

The components on each diagonal are the constant. 

Numbering the main diagonal as diagonal 0, the diagonals 

above as 1, 2, 3 … and the diagonals below as −1, −2, −3, 

…, the components on the r’th diagonal are all equal to 
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





m

r
 m−r. So the components below the main diagonal are 

zero. 

Proof: Let Jm = (aij
(m)). 

I will prove by induction on m that aij
(m) = 







m

i−j
 m−i+j. 

This uses the identity 






m

r
 = 







m− 1

r − 1
 + 







m − 1

r
 . ☺ 

 

Example 10: If J = 






 1

0 
 then Jm = 







m   mm−1

0    m  .  

If J = 






 1 0

0  1

0 0 

 then Jm = 









m   mm−1   







m

2
m−2

0    m    mm−1

0    0    m

 . 

 

If J is a direct sum of Jordan blocks we raise each of the 

blocks independently. 

 

Example 11: If J = 






J1  0

0  J2
 where J1 and J2 are Jordan 

blocks then Jm = 






J1

m  0

0  J2
m  . 
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§6.5. Will That Asteroid Ever Hit The 

Earth? 

 

Imagine that we have the equation of motion of an 

asteroid. We could potentially use it to work out whether 

it will ever hit the earth. The problem we’re discussing 

next is a sort of discrete version of this scenario. We 

suppose that we know the current position of an object 

and we have a function that gives its position after 1 unit 

of time. Will this moving object ever reach a certain 

location? 

 

Of course there’s the difficulty that the earth and the 

asteroid are not points in space. If we represented their 

location by their centres of gravity we’d get a disastrous 

situation if they even came within thousands of 
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kilometres of each other. Here we’re talking about exact 

positions. 

 

Because were discussing linear algebra we’ll assume that 

the function that takes an object at position v to its 

position, one unit of time later, is a linear transformation 

from ℝn to ℝn (no need to stick to only 3 dimensions). So 

it can be represented by an n  n matrix. 

 

If the movement in one unit of time is v → Av, then after 

m units of time we’ll have v → Amv. So if our ‘target’ is 

at c, we want to know whether an object currently at 

position v, will ever hit the target at position c. In other 

words we want to know if the equation Amv = c has a 

solution for m, given v and c. 

 

We find a direct sum of Jordan blocks, J, that is similar to 

the matrix A. This, we can always do. Then, if A = SJS −1 

then Amv = SJmS−1v. Hence we can decide whether there 

is a solution. 

 

Example: Let A = 






3  4

−1 −1
 , v = 







1

2
  and c = 







1001

−498
 . Will 

Amv = c for any m? 

Solution: A() = 2 − 2 + 1 = ( − 1)2 so there is a 

repeated eigenvalue of 1. 
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A − I = 






  2  4

−1 −2
  so 







2

−1
  is the ‘only’ eigenvector. In other 

words the eigenspace is only 1-dimensional. 

 

The Jordan Canonical Form is clearly J = 






1 1

0 1
 . Let S = 

(u, w) so that AS = SJ. 

Then A(u, w) = (u, w) 






1 1

0 1
  and hence Au = u and Aw = 

u + w. 

Take u = 






2

−1
 . We must find w such that (A − I)w = u. 

A − I = 






  2  4

−1 −2
  so we adjoin u to get 







2  4    2

−1 −2   −1
  → 







1  2   1

0  0   0
 . So take w = 







−1

 1
 . 

Hence S = 






  2 −1

−1  1
 . Now S−1 = 







1  1

1  2
 . 

Hence A = SJS−1 and so Am = SJmS−1 = 






  2 −1

−1  1
 






1 m

0 1
 







1  1

1  2
 . 

Therefore Amv = 






  2 −1

−1  1
 






1 m

0 1
 






1  1

1  2
 






1

2
  

                       = 






  2 −1

−1  1
 






1 m

0 1
 






3

5
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                       = 






  2 −1

−1  1
 






5m + 3

5
  

                       = 






10m + 1

−5m + 2
 . 

So if Amv = 






1001

−498
 we must have 



10m + 1 = 1001

−5m + 2 = −498
 . 

These equations are consistent, so there is a solution, 

namely m = 100. 

If this was an asteroid potentially hitting a 2-dimensional 

earth, and the unit of time was years, the asteroid would 

hit the earth after 100 years. 

 

If c = 






1000

−500
  the asteroid would never hit the earth 

because the system of equations 


10m + 1 = 1000

−5m + 2 = −500
  is 

inconsistent. However, depending on the units of 

distance, it could be a close thing in 100 years! 

  If c = 






1005

−500
  the system 



10m + 1 = 1005

−5m + 2 = −500
  has a 

solution m = 100.4. So the asteroid would hit the earth in 

just over 100 years. 

 

It should be pointed out that the ‘application’ to asteroids 

hitting the earth is purely a way of depicting the 

mathematical problem and it is not a realistic 
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astronomical model. There are applications of this 

technique, but they are not nearly so dramatic! 

  

 

EXERCISES FOR CHAPTER 6 
 

Exercise 1: (a) Write down all 5  5 direct sums of Jordan 

blocks J whose spectrum is {5}. 

(b) For each of the above matrices find its minimum 

polynomial. 

(c) Which of the above matrices are similar? 

 

Exercise 2: If A = 
















−

−

401

131

012

 find an invertible matrix S 

such that A = SJS−1 where J is a direct sum of Jordan 

blocks. 

 

Exercise 3: Explain why A = 
















300

120

011

 is diagonalisable. 

Exercise 4: Suppose A is a non-diagonalisable matrix 

such that Ak = I for some k and   0. Find . 
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Exercise 5: Prove that for a square matrix A the number 

of Jordan blocks in its Jordan Canonical Form is the 

dimension of the eigenspace EA. 

 

 

SOLUTIONS FOR CHAPTER 6 
Exercise 1: (a)  

J1 = 























50000

05000

00500

00050

00005

 ,  

 

J2 = 























50000

05000

00500

00050

00015

, 

 

J3 = 























50000

05000

00500

00150

00005

, 
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J4 = 























50000

05000

01500

00050

00005

, 

 

J5 = 























50000

15000

00500

00050

00005

, 

 

 J6 = 























50000

05000

00500

00150

00015

, 

 

J7 = 























50000

05000

01500

00050

00015

, 
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J8 = 























50000

15000

00500

00050

00015

, 

 

J9 = 























50000

05000

01500

00150

00005

, 

 

J10 = 























50000

15000

00500

00150

00005

, 

 

J11 = 























50000

15000

01500

00050

00005

, 
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 J12 = 























50000

05000

01500

00150

00015

, 

 

J13 = 























50000

15000

00500

00150

00015

, 

 

J14 = 























50000

15000

01500

00050

00015

, 

 

J15 = 























50000

15000

01500

00150

00005

, 
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J16 = 























50000

15000

01500

00150

00015

. 

 

minimum 

polynomial 

examples 

(x − 5)5 J16 

(x − 5)4 J12, J15 

(x − 5)3 J6, J9, J11, J13, J14 

(x − 5)2 J2, J3, J4, J5, J7, J8, 

J10 

x − 5 J1 

 

Similarity classes: 

J1 J2, J3, J4, J5 J6, J9, J11 

1 + 1 + 1 + 1 + 1 2 + 1 + 1 + 1 3 + 1 + 1 

 

J7, J8, J10 J12, J15 J13, J14 J16 

2 + 2 + 1 4 + 1 3 + 2 5 

 

The second row gives the sizes of the Jordan blocks. 
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Exercise 2: tr(A) = 9. 

tr2(A) = 
31

12

−
 + 

41

02

−
 + 

40

13
 = 7 + 8 + 12 = 27. 

|A| = 

401

131

012

−

−  = 2(12) − (−3) = 27. 

A(x) = x3 − 9x2 + 27x − 27 = (x − 3)3. 

So 3 is the only eigenvalue. 

A − 3I = 
















−

−

−

101

101

011

 → 
















−

−

000

110

011

 so 
















1

1

1

 spans the 

eigenspace EA(3).Clearly A is not diagonalisable. 

Moreover if the Jordan Canonical form is 
















300

030

013

 the 

dimension of EA(3) would be 2. So A is similar to J = 

















300

130

013

. 

Let S = (v1, v2, v3) be an invertible matrix. 

Then AS = (Av1, Av2, Av3) and SJ = (3v1, v1 + 3v2, v2 + 

3v3), so to get AS = SJ we need 

Av1 = 3v3, Av2 = v1 + 3v2, Av3 = v2 + 3v3. 
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Take v1 = 
















1

1

1

. 

















−

−

−

1

1

1

101

101

011

 → 














 −

−

−

0

0

1

000

110

011

 so take v2 = 
















1

1

0

. 

















−

−

−

1

1

0

101

101

011

 → 
















−

−

−

1

1

0

110

110

011

 → 
















−−

−

0

1

0

000

110

011

 so 

take v3 = 
















1

0

0

. 

Then if S = 
















111

011

001

, A = SJS−1. 

 

Exercise 3: Although A looks like a Jordan block it has 

distinct eigenvalues 1, 2, 3 and so it really is 

diagonalisable. Remember that the diagonal components 

of a Jordan block have to be equal. 
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Exercise 4: If   0 and B = 
1

1/k A then Bk = 
1


 Ak = I. 

Since matrices of finite order are diagonalisable B, and 

hence A, is diagonalisable. So  = 0. 

  

Exercise 5: The eigenspace of a direct sum of Jordan 

blocks is the direct sum of the eigenspaces of the 

individual Jordan blocks. The dimension of the 

eigenspace of a Jordan block B = 































0000

1000

010

001







 is 1 

since B − I = 























00000

10000

0100

0010







 and the only solutions 

of the equation (B − I)v = 0 are the scalar multiples of 























1

0

0

0

  . 

 



 

202 

 

FURTHER EXERCISES 
If you need further practice with Jordan Canonical 

Forms why not make up your own examples by working 

backwards. Choose a Jordan Canonical Form J and an 

invertible matrix T and compute A = TJT−1. Now work 

out the eigenvalues and eigenvectors, the Jordan 

Canonical Form and a suitable matrix S such that A = 

SJS−1. Your J should be the Jordan Canonical Form you 

started with (perhaps with the Jordan blocks rearranged. 

But note that your S need not be the same as the T you 

began with. Check your answer by computing SJS−1. 

 To make the arithmetic pleasant you should keep 

your eigenvalues between −9 and 9 and your invertible 

matrix should have determinant 1 or −1. 

 

Here are some T’s that have this property. 

 










32

53
, 

















122

011

123

, 





















4843

51195

2412

1111

. 

 


