6. JORDAN CANONICAL
FORM

86.1. Minimum Polynomials

If you substitute the square matrix A into the
characteristic polynomial ya(A) you get the zero matrix.
But there may be polynomials of lower degree for which
this is true.

A minimum polynomial for the square matrix A is a
monic polynomial f (1) of lowest degree with f(A) = 0.
Since ya(x) = 0, 1 < deg f(A) < n for any minimum
polynomial () for the n x n matrix A.

2 00

Example 1: The scalar matrix [0 2 0| hasA -2asa
0 0 2

minimum polynomial.

10
Example 2: IfFA=|0 2

0 0
(L —1)(A —2) =A% — 31 + 2 is a minimum polynomial for
A.

0
0fthen(A-1N(A-21)=0,s0
1
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Is @ minimum polynomial unique? Could we have,
for example, a matrix for which both x3 + 4x — 2 and x® -
5x? + 7 are minimum polynomials? The answer is “no”,
for that would mean that:

A+ 4A -21=0and
A3 —-5A2+71=0.

Subtracting, we would have 5A? + 4A — 91 = 0, which
would contradict the minimality of the degree of the
minimum polynomials.

But what if there is no polynomial f(x) for which
f(A) = 0? That can’t be, as the following theorem shows.

Theorem 1: For any n x n matrix A over a field F there
exists a non-zero polynomial f(x), with coefficients in F,
for which f(A) = 0.

Proof: Consider the matrices I, A, A?, ..., A" The space
of all n x n matrices over F has dimension n? and here we
have n? + 1 of them. They must therefore be linearly
independent over F and so f(A) = 0 for some polynomial
of degree at most n? + 1.

In fact we can do much better than that. We will
later see that the minimum polynomial of an n x n matrix
has degree at most n.
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Theorem 2: A minimum polynomial for a given matrix
IS unique.
Proof: Suppose X" + ar-1x"* + ... + a;x + ap and
X'+ brax™1 + ..+ bix + bo be distinct minimum
polynomials for A. Then

A"+ a4 A"+ +aA+al=0and

A"+ b1 AL+ L+ DA + ol = 0.
Subtracting we get:
(ar-1 — br—1) A" + ... + (a1 — b1)A + (ap — bo)l = 0.
Let f(x) = (ar-1 — br-))X™1 + ... + (a1 — bo)x + (a0 — bo).
Since the original two polynomials were distinct this is
not the zero poloynomial. It may not have degree r — 1
since ar-1 and br-1 might be equal, but it certainly is a
non-zero polynomial and its degree is less than r. Making
it monic we get a contradiction. % ©

Since it is unique we can now refer to it as the
minimum polynomial and it is now appropriate to give it
a notation. We define ma(x) to be the minimum
polynomial of A. Sometimes we will omit the subscript
and just write m(x).
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Theorem 3: For all square matrices A, if f(A) = 0 then
ma(x) divides f(x).
Proof: By the division algorithm for polynomials we may
divide f(x) by the minimum polynomial to get a quotient
and a remainder.
So f(x) = ma(x)q(x) + r(x) where either r(x) = 0 or

deg r(x) < deg ma(x).
But r(A) = f(A) — ma(A)q(A) =0 -0 =0. If r(x) # 0 this
would contradict the minimality of the degree of the
minimum polynomial. Hence r(x) = 0 and so ma(x) | f(x).
%©
Corollary: ma(x) divides ya(x).

So we can find the minimum polynomial of a
matrix by factorising its characteristic polynomial and
testing all its divisors.

Example 3: Find the minimum polynomial of

9 14 21
A=|-7 -12 -21]
2 4 8

Solution: tr(A) =5,
tro(A) = (—108 + 98) + (72 — 42) + (—96 + 84)
=-10+30-12=8
|A| = 9(-96 + 84) — 14(-56 + 42) + 21(-28 + 24)
=4,
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Sox(X) =x3—5%% + 8x — 4
= (x - 1)(x - 2)%
Hence m(x) divides (x — 1)(x — 2)2 Clearly it is not a linear
factor since A is not a scalar matrix. This leaves three
possibilities: (x — 2)?, (x — 1)(x — 2) and 7y (x) itself.
7 14 21N\/7 14 21
(A-21)?= (—7 -14 —21) (—7 -14 —21)

2 4 6/\2 4 6

* Kk %k
=|* *x *x | (.
* ok —

8 14 21 7 14 21
(A-D(A-2l) =|-7 13 —21) (—7 14 —21)
2 4 7 2 4 6
000
(00 oj
000
So ma(X) = (X —1)(x —2) =x® - 3x + 2.

Once we have proved the next theorem we can
reduce the number of factors of y(x) that we need to
check.
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Theorem 4: Every eigenvalue is a zero of the minimum
polynomial.
Proof: Let m(x) = X" + an-1x"1 + ... + a;x + ao be the
minimum polynomial for A.
Let A be an eigenvalue of A and let v be a corresponding
eigenvector.
Then m(A)v = (A" + ar1A™ L + .. + a1A + agl)v

=\ +ar A+ L+ ak + ag)v
But m(A)v =0v =0.
LN +am N+ L rai ragv =0,
Sincev=0, mA) = A" +ar A+ . +al+a=0. %O
Corollary: ma(x) and ya(x) have exactly the same zeros,
but with perhaps different multiplicities.

Example 4: Suppose, for some matrix A,
2(X) = (x = 1)*(x = 2)*(x - 2).
Then we would evaluate the following in turn and we
would stop if we got one equal to zero.
A-DA-2)A-3I)
(A -D*A-21)(A-3I)
(A-D(A-21)*A-3l)
(A - D*A-21)*(A-3I)
If none of these are zero then we could conclude that the
minimum polynomial is the characteristic polynomial.
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As we know, similar matrices have the same trace,
determinant and characteristic polynomial. They also
have the same minimum polynomial.

Theorem 5: Similar matrices have the same minimum
polynomial.
Proof: Suppose that B = SAS.
Now, for any k, B = (StAS) (S2AS) ... (SAS)
= SIAKS,

So for any polynomial f(x), f(B) = S*f(A)S and hence

f(B) = 0 if and only if f(A) = 0.
It follows from Theorem 2 that the minimum polynomials
of A and B divide each other, and being monic, they must
be equal. %©

Theorem 6: A matrix is diagonalisable if and only if its
minimum polynomial has no repeated zeros.

A 0 -« 0
Proof: Let A=SDSwhereD =% %= = %|ands

is invertible.
Let Ay, ..., Ay, be the distinct eigenvalues.

Then mA(X) = mD(X) = (X - Kul) (X - 7\.u2) (X - kur).
Conversely suppose that A is an n x n matrix and suppose
that
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m(x) = (X — A1)(X — A2) ... (X — A;) where the A; are distinct.
For each i1 define mi(x) = % that is m(x) with the
factor x — A; removed.

Then the m;(x) are coprime and so 1 = m;(X)ky(X) + ... +

m.k(x) for some polynomials

Ki(X), ..., Ki(X).
Let v be any column vector and let v; = mi(A)ki(A)v for i
=12, ..r.
Thenv=vi+ ..+ V.
Now (A — Ail)vi = (A — L)mi(A)ki(A)v

= m(A)ki(A)v

= 0 ki(A)v

=0.
Hence each v; is an eigenvalue, with 2A; being the
corresponding eigenvector.
We have therefore shown that every vector is a sum of
eigenvectors. The eigenvectors therefore span R", and a
subset of them will be a basis of eigenvectors. We have
shown that this means that A is diagonalisable. % ©

We have shown that matrices with distinct
eigenvalues and matrices of finite order are
diagonalisable. Having proved theorem 3 we can provide
much shorter proofs.
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Theorem 7: Matrices with no repeated eigenvalues and
matrices A such A" = | for some r, are diagonalisable.
Proof: If ya(X) has no repeated zeros then the same is true
of ma(x).

If A" = I then ma(x) divides X" — 1, which has no repeated
zeros. % ©

86.2. Jordan Blocks

We’ve said a lot about diagonalisable matrices, but
what about those that have the misfortune to be non-
diagonalisable? Can we find something close to a
diagonal matrix that they are similar to?

A Jordan block is a square matrix of the form
A1 0 - 0

o 424 1 -0

0 0 0 4 1
0O 0 0 0 4
There are zeros below the diagonal and the same value
down the main diagonal. Every component in the
diagonal above the main diagonal has the value 1. Above
and to the right of this all the components are zero.

Example 5: A 1 x 1 Jordan block is justany 1 x 1 matrix.
A 2 x 2 Jordan block has the form [é /11)
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A 1 0
A 3 x 3 Jordan block hasthe form |0 4 1.
0 0 4
A1 00
A 4 x 4 Jordan block has the form 0 4 10 :
0 0 4 1
0O 0 0 A

Jordan blocks of size 2 x 2 and bigger are not
diagonalisable. They are the building blocks of non-
diagonalisable matrices.

We define the direct sum of square matrices Ay, Ay, ..., A;
to be the matrix

A 0 - 0
0 e 0
reme.a= 0
0 0 0 A

They are like diagonal matrices except that the A;’s are
square matrices and the 0’s above are matrices. Diagonal
matrices are simply direct sums of 1 x 1 matrices.
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3 4 7 8

Example 6: (1 2]@(5 6}@(9)=

O O O W B+
O O O &~ DN
o N o1 O O
O 00 OO0 ©O O
© O O O O

Clearly the characteristic polynomial of a direct sum is
the product of the corresponding characteristic
polynomials.

Example 7: The characteristic polynomial of the above 5
x 5 matrix is
(A2 =51 —2)(A% — 131 -2)(A. - 9).

Theorem 8: If A is an n x n matrix and ma(x) = (x — A)"
then A is similar to a Jordan block.

Proof: Suppose ma(x) = (x — A)". Clearly A is the only
eigenvalue.

Since (A — AD™ % 0, the kernel of the linear
transformation v — (A — Al)"v is not R".

Let u be any vector such that (A —A1)"u = 0.

[If (A — AD)"!u = 0 for all u then (A — A" = 0,
contradicting the minimality of the degree of ya(X).]
Fork=1, 2, 3, ..., ndefine vi = (A — Al)"*u.

So (A—-Alvi=(A-Al)"u=0,s0Avi = Avi.
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If k > 2 then (A — Avk = (A — A)"&Du = vig s0 Avi =
AVk + Vi-1.

We now show that {v1, v2, ..., vn} is linearly independent.
Suppose that x;v1 + ... + Xva = 0.
Then (Xo(A =AD" + Xo(A =AD" 2 + . + X1 (A — Al) +
XaHu =0
Suppose that x; # 0 for some m and let m be the largest
such subscript.
Then (X1(A =AD" + Xo(A =AD" 2 + .. + Xy (A -
AN 4 X (A =AD" u =0
Multiply by (A — A1)™L. Then xm(A — A" u = 0.
[All the previous terms disappear since (A — Al)" =
0.]
Since we chose u so that (A — A1)"*u = 0, it follows
that x, = 0, a contradiction.
So x; = 0 for all i and hence {vi, vz, ..., va} is linearly
independent. This set must therefore be a basis for R".

We have Avi = Avi,

AV = AVs + V1,

AVs = AV3 + V2,

AVn = AVn + Vp-1.
So the matrix of the linear transformation v — Av relative
to the basis {vi, vz, .., vn} is the Jordan block
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0..0
1

. This means that the matrix A is similar
0 00..A
to this Jordan block. % ©
86.3. The Jordan Canonical Form
A Jordan Canonical Form is a direct sum of Jordan
blocks. We’re going to prove that every square matrix
over C is similar to a direct sum of Jordan blocks.

Diagonalisable matrices are precisely those where the
Jordan blocks are all 1 x 1 matrices.

2 1000
02100
Example8: |0 0 2 0 0|isadirectsum of two Jordan
0 00 51
0 00O0G5
blocks.

Theorem 9: Let M be an n x n matrix over a field F whose
minimum polynomial is a(x)b(x), where a(x) and b(x) are
coprime. Then M is similar to A @ B for some matrices
A, B where ma(x) = a(x) and mg(x) = b(x).

Proof: Since a(x), b(x) are coprime, 1 = a(x)h(x) +
b(x)k(x) for some a(x), b(x).
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Let U be the kernel of the linear transformation v —
a(M)v and let V be the kernel of the linear transformation
v — b(M)v.

For any vector v € F", v = [a(M)h(M) + b(M)k(M)]v so
UnV=0andU+V=F"

Moreover, if v e Uthen Mv € Uand ifv € V then Mv e
V.

Let {us, Uz, ..., ur} be a basis for U and let {vi, vz, ..., Vs}
be a basis for V.

Then {uy, Uz, ..., Ur, V1, V2, ..., Vs} IS a basis for F".
Relative to this basis the matrix for v— Mv has the form

(Q I(E)J where A is an r x r matrix with ma(x) = a(x) and

B is an s x s matrix with mg(x) = b(x). [Of course n =r +
s.] ¥©

We are now ready to prove the Jordan Canonical
form theorem.

Theorem 10: Every square matrix over C is similar to a
direct sum of Jordan blocks.

Proof: We prove this by induction on the size of the
matrix. The theorem is clearly true for

1 x 1 matrices. Suppose that A is an n x n matrix and that
the theorem holds for smaller matrices.

180



Let the minimum polynomial of A be m(x) = b(x)c(x)
where b(x) = (x — A1)"and c(A) = 0.

In other words there are precisely r factors of x — A; in
m(x).] -

By theorem 8, A is similar to a direct sum (O Cj where B

is an r x r matrix with

mg(X) = (X — A)" and C is an s x s matrix with mg(x) =
c(x).

By theorem 7, A is similar to a Jordan block and by
induction C is similar to a direct sum of Jordan blocks. It
Is easy to see that if A;, A, are similar to Bj, B;
respectively then A; ® A; is similar to B; ® B,. %©

3 -22 18
Example 9: IfA=|3 -14 9 | find an invertible matrix
2 -8 4

S such that A = SJS™! where J is a direct sum of Jordan
blocks.

Solution: We obtain the Jordan Canonical Form by
following the steps in theorems 7 and 8.

We begin by working out the characteristic polynomial.
tr(A)=3-14+4=-7.

iry(A) = 3 —22‘+‘3 18‘+‘—14 9‘=—42+66+12—
3 -14 |2 4 -8 4
36 — 56 + 72 = 16.
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3 —-22 18 3 —-22 18

IAl=3 -14 9|=[0 8 -9 =3(32-72)+2(198 —
2 -8 4 2 -8 14

144) = — 120 + 108 = — 12.

Hence ya(X) = x3 + 7x2 + 16X + 12 = (x + 2)(x + 3).

5 -22 18 1 -4 3 1 -4 3
A+21=|3 -12 9| —>|2 -8 6|—>|0 0 0>
2 -8 6 5 -22 18 0 -2 3
1 -4 3
0 2 -3
0O 0 O
6
3| is an eigenvector for A = -2.
2
6 -22 18 1 -3 2 1 -3 2
A+3l=]3 -11 9|—>|2 -8 7|—>|0 -2 3|—>
2 -8 7 6 -22 18 0 -4 6
1 -3 2
2 -3
0
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5
3| is an eigenvector for A = -3.
2
5 -22 18)(6 -22 18
(A + 2D(A + 31) = |3 -12 9|3 -11 9| =
2 -8 6)\2 -8 7

0 -12 *
x % x| 20,
* * *

oo ma(X) = (X + 2)%(x + 3).
At this stage we could decide that the Jordan Canonical

-2 1 0
Formmustbe J=| 0 -2 0 | butletusderive itusing
0 0 -3

the proofs of theorems 7 and 8. This would allow us to
find an appropriate invertible matrix S (which by the
way, is not unique).

Let a(x) = (x + 2)2 and b(x) = x + 3.

5 —-22 18)\(5 -22 18 -5 10 0
(A+21)*=|3 -12 9|3 -12 9|=|-3 6 0| —>
2 -8 6)l2 -8 6 -2 4 0
1 -2 0
0 0 0.
0 0 0
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0 2

Soui=|0]|,uz2=11]is abasis for U, the kernel of v >
1 0

(A + 21,

Also vy = 3} Is a basis for V, the kernel of v — (A + 31)v.

0 2 5
Thenur=|0|,uz2=|1|,vi=3] isa basis for R3.
1 0 2
18 -16
Aui =9 | =4u; +9u, Auo = | -8 | = —4u1 — 8uz and
4 —4

Avi = — 3vi.
Relative to this basis the matrix of the linear
transformation v — Av is
4 -4 0
9 -8 0 |=B®CwhereB= [g :SJ and C = (-3).
0 0 -3
The minimum polynomial of B is (x + 2)?. Now B + 2| =

o o)l o)
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Letu = (;J which is a convenient vector outside of the

null-space of B + 2I.
Following theorem 7 we take vi = (B + 2l)u = (g —g

(gl

Then Bv; = [4 _4] (6] = (_12] = —2v1 and Bv, =
9 -8/{9 -18

4 -4\(1 _ 4 — Vi — 2V
o -g)lo) o) T *
The matrix of B relative to this basis is (_02 12j, giving

the Jordan form of A as

-2 1 0
J=10 -2 0 |.Wewould have to do a bit more work
0 0 -3

to follow through the change of bases to find the
appropriate S.

A quicker way to find an appropriate invertible matrix S,
once we have determined the J, is to work from first
principles. Write S in terms of its columns, as S = (v, vz,
V3).
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-2 1 0O
Then AS = (Avy, Avp, Avz)and JS=| 0 -2 0 |(v,

0 0 -3
V2, V3)
= (-2v2, Vi — 2v
—3Vs)
So we want Avi = —2vi, Avz = Vi — 2v2 and va = —3va.
6 5
Take vi =3, vs=|3]|. For vz we must solve the system
2 2
(A +2l)v2 = v1.
5-22 18|6 5-22 18|6 1-4 31
3-12 93| — 1 -4 3|1 — |0-23]1 -
2 -8 6|2 2 -8 6|2 0 0 0|0
1-43]1 2
0-23(1|. Takevo=|1].
0 0 0|0 1
6 2 5
Henceif S={3 1 3|wehave A =SJS
2 1 2
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86.4. Powers of Jordan Blocks

: : . m :
The Binomial Coefficients (rj are normally only defined
If 0 <r<m. However we’ll allow r to go outside this range

by defining (T) =0whenr<Qorr>m.

Theorem:11: If Jis an n x n Jordan Block,

A 10..0
L | e
0 00..A
(7 (e (e (e (e
T (e (T (e
v " ST RN
\» 0 0 0 (1); %

The components on each diagonal are the constant.
Numbering the main diagonal as diagonal 0, the diagonals
above as 1, 2, 3 ... and the diagonals below as -1, -2, -3,
..., the components on the r’th diagonal are all equal to
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m .
(rj A™ . So the components below the main diagonal are

zero.
Proof: Let J" = (a;;(™).

m)
| will prove by induction on m that a;™ = (i—jj AT,

This uses the identity (Tj = (rrn: ﬂ + [m . 1) %O

_ (A1 m_(m mxm‘lj
Example 10: If J = (O xj then J" = 0 am )

m

IfJ=|0A1|thenJ"= m m-1 |-
0 A mA
O0A

0 0 A™

If J is a direct sum of Jordan blocks we raise each of the
blocks independently.

J1 0
Example 11: If J = (01 Jj where J; and J, are Jordan

o (" Oj
blocks then J™ = ( 0 I,
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86.5. Will That Asteroid Ever Hit The
Earth?

Imagine that we have the equation of motion of an
asteroid. We could potentially use it to work out whether
it will ever hit the earth. The problem we’re discussing
next is a sort of discrete version of this scenario. We
suppose that we know the current position of an object
and we have a function that gives its position after 1 unit
of time. Will this moving object ever reach a certain
location?

Of course there’s the difficulty that the earth and the
asteroid are not points in space. If we represented their
location by their centres of gravity we’d get a disastrous
situation if they even came within thousands of
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kilometres of each other. Here we’re talking about exact
positions.

Because were discussing linear algebra we’ll assume that
the function that takes an object at position v to its
position, one unit of time later, is a linear transformation
from R" to R" (no need to stick to only 3 dimensions). So
it can be represented by an n x n matrix.

If the movement in one unit of time is v — Av, then after
m units of time we’ll have v — A™v. So if our ‘target’ is
at ¢, we want to know whether an object currently at
position v, will ever hit the target at position c. In other
words we want to know if the equation A™v = ¢ has a
solution for m, given v and c.

We find a direct sum of Jordan blocks, J, that is similar to
the matrix A. This, we can always do. Then, if A =SJS
then A™v = SJ"S-1v. Hence we can decide whether there
is a solution.

3 4 1 1001 :
Example: Let A= (_1 _J V= (ZJ andc = (—498] - Will
A" = ¢ for any m?
Solution: ya(A) = A2 — 20 + 1 = (A — 1)? so there is a
repeated eigenvalue of 1.
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2 4 2
A-1= (_1 _2) S0 (_1] is the ‘only’ eigenvector. In other
words the eigenspace is only 1-dimensional.

: . 11
The Jordan Canonical Form is clearly J = (O 1) .LetS=
(u, w) so that AS = SJ.

Then A(u, w) = (u, w) @ ﬂ and hence Au =uand Aw =
u+w.

2
Takeu = (_J . We must find w such that (A — )w = u.

_(24) dioi ‘(24 ZB
A-1=|_4 o/ soweadjoinutogetl ; , 4| —
((1)(2) éj.Sotakew:(_llj.

(2 1_(1 1)
HenceS—(_1 1] w S 12

2-1\(1
Hence A = SJS* and so A™ = SJ"S™ = ( ]( mj

1y o
Therefore A" = (2 1} oD 2B
(a6
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_[ 2—1}[5m+3)
11 5

B [10m + 1)

S \-bm+2)°
Soif A" = (lOOlj we must have { 10m +1 = 1001

—498 —5m+2=-498"

These equations are consistent, so there is a solution,
namely m = 100.
If this was an asteroid potentially hitting a 2-dimensional
earth, and the unit of time was years, the asteroid would
hit the earth after 100 years.

1000
If ¢c = ( j the asteroid would never hit the earth

—500
10m + 1 =1000
-5m + 2 =-500
inconsistent. However, depending on the units of
distance, it could be a close thing in 100 years!
B (1005) {IOm +1=1005

If ¢ = | _gyg) the system | o . »_ _ggp has a
solution m = 100.4. So the asteroid would hit the earth in
just over 100 years.

because the system of equations { IS

It should be pointed out that the ‘application’ to asteroids
hitting the earth is purely a way of depicting the
mathematical problem and it is not a realistic
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astronomical model. There are applications of this
technique, but they are not nearly so dramatic!

EXERCISES FOR CHAPTER 6

Exercise 1: (a) Write down all 5 x 5 direct sums of Jordan
blocks J whose spectrum is {5}.

(b) For each of the above matrices find its minimum
polynomial.

(c) Which of the above matrices are similar?

2 10
Exercise 2: IfA=|-1 3 1| find an invertible matrix S
-1 0 4

such that A = SJS™! where J is a direct sum of Jordan
blocks.

110
Exercise 3: Explainwhy A=|0 2 1] isdiagonalisable.
0 0 3

Exercise 4. Suppose A is a non-diagonalisable matrix
such that A% = Al for some k and A > 0. Find .
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Exercise 5: Prove that for a square matrix A the number
of Jordan blocks in its Jordan Canonical Form is the
dimension of the eigenspace Ea.

SOLUTIONS FOR CHAPTER 6

Exercise 1: (a)

5 000O
05000
J1=|0 050 0},
0 0050
0 00 OS5
51000
05000
=10 0 5 0 0],
0 0050
0 00 0S5
5 00O0O
05100
J3=|(0 0 5 0 0],
0 0050
0 00 0S5
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5 0 00O
0 5000
00510

0 0050
0 00 05

J4=

5 0 00O
0 5000
0 0500
0 0051
0 00 05

J5:

51000
05100
0 0500

0 0050
0 00 0S5

J6=

51000
05000
00510

0 0050
0 00 0S5

J7:
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51000
0 5000
0 0500
0 0051

0 00 O05

J8=

5 00O0O0
05100
00510

0 0050

0 00 O05

J9:

5 00O0O
05100

0 0500
0 0051

0 00 OS5

JlO

5 00O0O

05000
00510
0 0051

0 00 0S5

Jll
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51000
05100
0 0510

0 0050
0 00 0S5

JlZ

51000
05100
0 0500
0 00 51
0 00 05

51000
05000

00510
0 00 51
0 00 0S5

Ji3

\]14

5 00O0O0
05100
00510

0 00 51
0 00 OS5

\]15
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51000
05100
Jis=|0 0 51 0
0 00 51
0 00 05
minimum examples
polynomial
(x—5)° Ji6
(x — 5)* J12, Jis
(x —5)° Je, Jo, J11, Jis, Jua
(X —5)? J2, 3, Ja, Js, J7, Js,
J10
X—5 J1

Similarity classes:
J1 J2,J3,J4,J5 | J6, Jo, J1
1+1+1+1+1|2+1+1+1|3+1+1

J7, Js, J1o | J12, Ji15 | J13, J1a | Jus
2+2+1 (4+1 |3+2 |5

The second row gives the sizes of the Jordan blocks.
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Exercise 2: tr(A) = 9.

tra(A) = | 2 1+‘2 043 1‘=7+8+12:27.
-1 3 -1 4 0 4
2 1 0
A= -1 3 1| =2(12) - (=3) = 27.
-1 0 4

ra(X) = X3 —9x? + 27x — 27 = (x — 3)°.
So 3 is the only eigenvalue.

-110 1 -1 0 1
A-31=]-10 1 > |0 1 -1|so|1]| spans the
-1 0 1 0 0 O 1
eigenspace Ea(3).Clearly A is not diagonalisable.

310
Moreover if the Jordan Canonical formis |0 3 0| the
0 0 3

dimension of Ea(3) would be 2. So A is similar to J =
310

0 3 1].
0 0 3
Let S = (v1, V2, v3) be an invertible matrix.
Then AS = (Avy, Avo, Avz) and SJ = (3vy, vi + 3vz, Vo +
3vs), so to get AS = SJ we need
Avi = 3vs, Avo = V1 + 3vz, Avz = V2 + 3Va.
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1
Takevi=|1

1
-1 1 0]1 1 -1 0]-1 0
-1 0 1|1|>]0 11030takevZ=1.
-1 0 11 0 0 1
-1 1 0|0 1 -1 0|0 1 -1 0|0
-1 0 1|1 0 -1 1|1 > |0 1 -1|-1| so
-1 0 1|1 0 -1 11 0 0 0O

0
takeVe,:O].

1

1 00
ThenifS=|1 1 0|, A=SJS™.

11 1

Exercise 3: Although A looks like a Jordan block it has
distinct eigenvalues 1, 2, 3 and so it really is
diagonalisable. Remember that the diagonal components
of a Jordan block have to be equal.
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: 1 1
Exercise 4: If L = 0 and B = >33 A then BX :XAK = 1.

Since matrices of finite order are diagonalisable B, and
hence A, is diagonalisable. So A = 0.

Exercise 5: The eigenspace of a direct sum of Jordan
blocks is the direct sum of the eigenspaces of the
individual Jordan blocks. The dimension of the

A1 0 - 0

0o 4 1 -0
eigenspace of a Jordan blockB=1|... ... ... ... ...]is1l

0 0 0 4 1

0 0 0 O
sinceB-Al=]|... ... ... ... ...]and the only solutions

0O 0 0 0 1
0O 0 0 0 O

of the equation (B — Al)v = 0 are the scalar multiples of
0

0
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FURTHER EXERCISES

If you need further practice with Jordan Canonical
Forms why not make up your own examples by working
backwards. Choose a Jordan Canonical Form J and an
invertible matrix T and compute A = TJTX. Now work
out the eigenvalues and eigenvectors, the Jordan
Canonical Form and a suitable matrix S such that A =
SJS™L. Your J should be the Jordan Canonical Form you
started with (perhaps with the Jordan blocks rearranged.
But note that your S need not be the same as the T you
began with. Check your answer by computing SJS™.

To make the arithmetic pleasant you should keep
your eigenvalues between —9 and 9 and your invertible
matrix should have determinant 1 or —1.

Here are some T’s that have this property.

11 1 1
3 21
3 5 2 1 2
,[1 1 0f, .
2 3 5 9 11 5
2 2 1
3 4 8 4
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